nichtarchimedischer Körper
- nichtarchimedischer Körper
-
ein angeordneter Körper
K, in dem das
archimedische Axiom nicht gilt. Ist
a ein
Element von
K mit der
Eigenschaft, dass kein natürlichzahliges
Vielfaches von
a 1 übertrifft, so nennt man
a ein
unendlich kleines Element. Da die Differenzial- und
Integralrechnung ursprünglich mit solchen Elementen arbeitete, erlaubt die Verwendung nichtarchimedischer Körper in gewisser Weise eine
Rekonstruktion früherer Vorstellungen (
Nichtstandardanalysis). Geometrien, die sich nichtarchimedischer Körper bedienen, werden
nichtarchimedische Geometrien genannt (erstes systematisches
Studium durch G.
Veronese, 1891).
Universal-Lexikon.
2012.
Schlagen Sie auch in anderen Wörterbüchern nach:
P-adischer Körper — Für jede Primzahl p bilden die p adischen Zahlen einen Erweiterungskörper der rationalen Zahlen; sie wurden 1897 erstmals von Kurt Hensel beschrieben. Diese Körper werden benutzt, um Probleme in der Zahlentheorie zu lösen, oftmals unter… … Deutsch Wikipedia
Hurwitzquaternion — Eine Hurwitzquaternion (oder Hurwitz Ganzzahl) in der Mathematik ist eine Quaternion, deren vier Koeffizienten entweder alle (rational )ganzzahlig oder alle halbzahlig (Hälften ungerader ganzer Zahlen) sind – Mischungen von Ganzzahlen und… … Deutsch Wikipedia
2-adisch — Für jede Primzahl p bilden die p adischen Zahlen einen Erweiterungskörper der rationalen Zahlen; sie wurden 1897 erstmals von Kurt Hensel beschrieben. Diese Körper werden benutzt, um Probleme in der Zahlentheorie zu lösen, oftmals unter… … Deutsch Wikipedia
P-adisch — Für jede Primzahl p bilden die p adischen Zahlen einen Erweiterungskörper der rationalen Zahlen; sie wurden 1897 erstmals von Kurt Hensel beschrieben. Diese Körper werden benutzt, um Probleme in der Zahlentheorie zu lösen, oftmals unter… … Deutsch Wikipedia
P-adische Zahl — Für jede Primzahl p bilden die p adischen Zahlen einen Erweiterungskörper der rationalen Zahlen; sie wurden 1897 erstmals von Kurt Hensel beschrieben. Diese Körper werden benutzt, um Probleme in der Zahlentheorie zu lösen, oftmals unter… … Deutsch Wikipedia
P-adische Zahlen — Für jede Primzahl p bilden die p adischen Zahlen einen Erweiterungskörper der rationalen Zahlen; sie wurden 1897 erstmals von Kurt Hensel beschrieben. Diese Körper werden benutzt, um Probleme in der Zahlentheorie zu lösen, oftmals unter… … Deutsch Wikipedia
P-adischer Betrag — Für jede Primzahl p bilden die p adischen Zahlen einen Erweiterungskörper der rationalen Zahlen; sie wurden 1897 erstmals von Kurt Hensel beschrieben. Diese Körper werden benutzt, um Probleme in der Zahlentheorie zu lösen, oftmals unter… … Deutsch Wikipedia
p-adische Zahl — Für jede Primzahl p bilden die p adischen Zahlen einen Erweiterungskörper der rationalen Zahlen; sie wurden 1897 erstmals von Kurt Hensel beschrieben. Diese Körper werden benutzt, um Probleme in der Zahlentheorie zu lösen, oftmals unter… … Deutsch Wikipedia