nichtarchimedischer Körper

nichtarchimedischer Körper
nicht|archimedischer Körper,
 
ein angeordneter Körper K, in dem das archimedische Axiom nicht gilt. Ist a ein Element von K mit der Eigenschaft, dass kein natürlichzahliges Vielfaches von a 1 übertrifft, so nennt man a ein unendlich kleines Element. Da die Differenzial- und Integralrechnung ursprünglich mit solchen Elementen arbeitete, erlaubt die Verwendung nichtarchimedischer Körper in gewisser Weise eine Rekonstruktion früherer Vorstellungen (Nichtstandardanalysis). Geometrien, die sich nichtarchimedischer Körper bedienen, werden nichtarchimedische Geometrien genannt (erstes systematisches Studium durch G. Veronese, 1891).

Universal-Lexikon. 2012.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • P-adischer Körper — Für jede Primzahl p bilden die p adischen Zahlen einen Erweiterungskörper der rationalen Zahlen; sie wurden 1897 erstmals von Kurt Hensel beschrieben. Diese Körper werden benutzt, um Probleme in der Zahlentheorie zu lösen, oftmals unter… …   Deutsch Wikipedia

  • Hurwitzquaternion — Eine Hurwitzquaternion (oder Hurwitz Ganzzahl) in der Mathematik ist eine Quaternion, deren vier Koeffizienten entweder alle (rational )ganzzahlig oder alle halbzahlig (Hälften ungerader ganzer Zahlen) sind – Mischungen von Ganzzahlen und… …   Deutsch Wikipedia

  • 2-adisch — Für jede Primzahl p bilden die p adischen Zahlen einen Erweiterungskörper der rationalen Zahlen; sie wurden 1897 erstmals von Kurt Hensel beschrieben. Diese Körper werden benutzt, um Probleme in der Zahlentheorie zu lösen, oftmals unter… …   Deutsch Wikipedia

  • P-adisch — Für jede Primzahl p bilden die p adischen Zahlen einen Erweiterungskörper der rationalen Zahlen; sie wurden 1897 erstmals von Kurt Hensel beschrieben. Diese Körper werden benutzt, um Probleme in der Zahlentheorie zu lösen, oftmals unter… …   Deutsch Wikipedia

  • P-adische Zahl — Für jede Primzahl p bilden die p adischen Zahlen einen Erweiterungskörper der rationalen Zahlen; sie wurden 1897 erstmals von Kurt Hensel beschrieben. Diese Körper werden benutzt, um Probleme in der Zahlentheorie zu lösen, oftmals unter… …   Deutsch Wikipedia

  • P-adische Zahlen — Für jede Primzahl p bilden die p adischen Zahlen einen Erweiterungskörper der rationalen Zahlen; sie wurden 1897 erstmals von Kurt Hensel beschrieben. Diese Körper werden benutzt, um Probleme in der Zahlentheorie zu lösen, oftmals unter… …   Deutsch Wikipedia

  • P-adischer Betrag — Für jede Primzahl p bilden die p adischen Zahlen einen Erweiterungskörper der rationalen Zahlen; sie wurden 1897 erstmals von Kurt Hensel beschrieben. Diese Körper werden benutzt, um Probleme in der Zahlentheorie zu lösen, oftmals unter… …   Deutsch Wikipedia

  • p-adische Zahl — Für jede Primzahl p bilden die p adischen Zahlen einen Erweiterungskörper der rationalen Zahlen; sie wurden 1897 erstmals von Kurt Hensel beschrieben. Diese Körper werden benutzt, um Probleme in der Zahlentheorie zu lösen, oftmals unter… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”